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Bayes Rule

Ingredients:

Model M

Data D

Prior P(M)

Conditional Probability P(D|M)

Bayes Rule P(M|D) =
P(D|M)P(M)

P(D)
=

P(D|M)P(M)∫
P(D|M)P(M)dM

 multiple data points by independence assumption:

P(D1, . . . ,Dn|M) =
n∏

i=1

P(Di |M).
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An example

M ∈ {evolution, intelligent design, the Matrix}.
D ∈ {fossils, the bible, déjà vu}

So what is P(evolution|the bible)?

Or P(intelligent design|fossils)?

Or P(the Matrix|fossils) vs. P(the Matrix|many déjà vus)?
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Alternatively...

∫
P(D|M)P(M)dM looks like one step in a Markov chain.

 models are weighted according to their contribution to D
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Why choose different priors?

Shouldn’t we be open to all possibilities?

And be free from prejudice?
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Conjugacy

Depending on the probabilities involved, computing Bayes formular
requires one integration which may be infeasible.

However, for many probability distributions, it is possible to choose
a prior such that

Bayes rule can be applied exactly,

the posterior has the same functional form as the prior.

This is called conjugacy, and the prior is called the conjugate prior.
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Bernoulli distribution

P(x = 1|µ) = µ P(x = 0|µ) = 1− µ

 P(x |µ) = µx(1− µ)1−x
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Guessing the prior

P(M|D) =
PD|MP(M)

P(D)
∝ P(D|M)P(M).

Approach: Forget the normalization, look for a P(M|θ) such that

P(D|M)P(M|θ) ∝ P(M|θ′)

For example: µa(1− µ)b:

µx(1− µ)1−xµa(1− µ)b = µx+a(1− µ)b+1−x
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Finding the normalization

Fortunately, this has already been carried out and the correct prior
distributions can be found (somewhere)...

Beta distribution:

Beta(µ|a, b) =
Γ(a + b)

Γ(a)Γ(b)
µa−1(1− µ)b−1.

Expectation: a/a + b

(Γ(n) interpolates the factorial, Γ(n) = (n − 1)!).
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Interpreting the prior: Pseudo-counts

a, b are “pseudo-counts”:

µx(1− µ)1−xµa−1(1− µ)b−1 = µa+x−1(1− µ)b+(1−x)−1

Therefore:

a → a + 1 when x = 1

b → b + 1 when x = 0
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In a similar manner...

Binomial distribution:(
n

k

)
µk(a− µ)n−k =⇒ Beta(µ|a, b).

Multionimal distribution:(
n

n1n2 . . . nK

) K∏
k=1

µnk
k =⇒ Dirichlet distribution

Dir(µ|α) =
Γ(α0)

Γ(α1) . . . Γ(αK )

K∏
k=1

µα−1
k .
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The Gaussian

The Gaussian distribution:

p(x |µ, σ2) ∝ e−(x−µ)2/2σ2

Let us guess the correct prior for µ: it should be a quadratic
function x :

p(µ|a, b) ∝ e−a(x−b)2

... which is basically again a Gaussian distribution.

Posterior for n data points:

µn =
σ2

nσ2
0 + σ2

µ0 +
nσ2

0

nσ2
0 + σ2

µML

1

σ2
n

=
1

σ2
0

+
n

σ2
.

14 / 24



Introduction
Conjugacy

Philosophical Background

Example: Bernoulli distribution
Example: Gaussian random variables
Exponential Families

The Gaussian

Prior for σ2: Rewrite λ = 1/σ2, then

p(x |µ, λ) ∝ λ1/2e−λ(x−µ)2/2.

Guessing the prior:
 λbe−bλ

This leads to the Gamma-distribution:

Γ(λ|a, b) =
1

Γ(a)
baλa−1e−bλ.

Posterior for n data points:

aN = a0 +
n

2

bN = b0 +
n

2
σ2

ML.
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Exponential Families

In general, conjugate priors exist for distributions from the
exponential family.

p(x |θ) = h(x)e〈θ,x〉−ψ(θ).

Guessing the prior...

p(θ|a, b) ∝ e〈θ,a〉−bψ(θ).

Because:

e〈θ,x〉−ψ(θ)e〈θ,a〉−bψ(θ) = e〈θ,a+x〉−(b+1)ψ(θ)
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Exponential Families (cont’d)

Likelihood Prior/Posterior

Gaussian (mean) Gaussian
Gaussian (variance) Gamma

Poisson Gamma
Gamma Gamma
Binomial Beta

Negative Binomial Beta
Multinomial Dirichlet
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Bayesianism vs. Frequentism

Frequentism: Maximum-likelihood, Hypothesis Testing, Unbiased
Estimates, Support Vector Machines, etc.

Bayesianism: Bayesian estimation, Gaussian Processes, Belief
Networks, Factor Graphs, etc.

Irreconcilable Differences or Two Sides of the Same Coin?
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Interpretations of Probability Theory

P-Theo does not provide any linkage to the world.

It’s basically just this:

P(∅) = 0, P(A) = 1− P(A), P(
⋃̇

i
Ai ) =

∑
i

P(Ai )

E (X ), P(A ∩ B) = P(A)P(B) P(A|B) = P(A ∩ B)/P(B)

From this, everything else is derived, including laws of large
numbers, etc.
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Bayesianism vs. Frequentism

Use P-Theo to...

Frequentism: ... model independent repeatable experiments

 if I sum up many realizations, they will be close to the
expectation.

Bayesianism: ... model computations on belief distributions

 if I model the data correctly, my belief will be updated
accordingly.

Compete only in terms of real-world performance, but not over
what is the correct way to use P-Theo.

Except for: Bayesian approaches result in posterior distribution
while Frequentist methods usually just return a single solution.
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B vs F—in terms of modelling

Machine learning methods can roughly be decomposed in terms of

Modelling (what is it I want to learn)

Regularization (make sure we don’t overfit)

Inference (actually compute the solution given the data)

And this holds for both:

Bayesians Frequentist

modelling P(D|M) loss function
regularization P(M) regularization

inference Bayes-rule optimization
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B vs F—different kinds of uncertainty

Frequentism: modelling is kind of inexact, but at least inference
is exact.

Bayesianism: modelling is clear, but inference is kind of inexact.
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B vs F—irreconcilable differences?

Maybe, since tools are very different:

Frequentist: know which computations on samples
converge/concentrate, optimization theory (convex optimization,
gradient descent, interior point methods...), etc.

Bayesians: probability distributions, which priors make sensible
computations, sampling methods like MCMC, approximation
methods.

At least: You don’t have to choose! You can learn both. And of
course, you can combine both ;)
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Summary

Bayes rule

Conjugate priors

Bayesianism and Frequentism
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